Petrological Evidence from Komatiites for an Early Earth Carbon and Water Cycle

نویسنده

  • Claude Herzberg
چکیده

Komatiites from Alexo and Pyke Hill in the Archean Abitibi greenstone belt provide petrological evidence for an early Earth carbon and water cycle, ingassing in the cool Hadean and outgassing in the hot Archean. The komatiites have SiO2 contents that are lower than those expected of advanced volatile-free melting of mantle peridotite. The SiO2 misfit cannot be plausibly accounted for by variations in model Bulk-Earth peridotite composition, perovskite fractionation in a magma ocean, addition of chondrites, a source that had recycled crust added to it, or by chemical alteration during serpentinization. One possible resolution to the silica misfit problem is obtained if the komatiites from Alexo and Pyke Hill were partial melts of carbonated peridotite, a conclusion based on reasonable agreement between the major element compositions of komatiites (i.e. SiO2, Al2O3, FeO, MgO, and CaO) and experimental melt compositions of carbonated peridotite. High-degree melts with olivine as the sole residual phase can have low SiO2 contents owing to carbonate addition. Furthermore, a role for significant H2O is indicated from recent olivine-hosted melt inclusion studies. More work is needed to constrain how much CO2 and H2O is required to resolve the SiO2 misfit, and the T–P conditions of melting. Failure to do so imposes significant uncertainty in Archean mantle potential temperature and geodynamic interpretations. These uncertainties notwithstanding, the komatiites appear to be recording important degassing events in the Archean. Depending on the extent of volatile degassing, hydrous and CO2-rich komatiites could have formed either in mantle plumes or in ambient mantle. Ingassing may have occurred in the Hadean when atmospheric CO2 and H2O were sequestered by reaction with impact ejecta, oceanic crust and mantle peridotite to produce carbonates and hydrous minerals. Parts of the Earth may have been sufficiently cool at some point in the Hadean to ingas the deep mantle, consistent with a variety of constraints from zircon and isotopic studies. Hydrous and CO2-rich komatiites formed from ‘carbonated wetspots’ in mantle plumes or ambient mantle later in the Archean. The drop in komatiite production at the end of the Archean may be a record of significant purging of the mantle in volatiles, affecting biogenic methane production and the evolution of oxygen in the atmosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal evolution of the Earth as recorded by komatiites

Komatiites are rare ultramafic lavas that were produced most commonly during the Archean and Early Proterozoic and less frequently in the Phanerozoic. These magmas provide a record of the thermal and chemical characteristics of the upper mantle through time. The most widely cited interpretation is that komatiites were produced in a plume environment and record high mantle temperatures and deep ...

متن کامل

Petrological and geodynamical constraints of Chaldoran basaltic rocks, NW of Iran: evidence from geochemical characteristics

Chaldoran area in NW of Iran has Mesozoic oceanic crust basement. The studied rocks of this region can be divided into three groups: ophiolitic gabbros and pillow lavas, ophiolitic volcanoclastics and Eocene lava flows. Ophiolitic mafic rocks show continental volcanic arc natures and Eocene lava flow shows OIB-like nature. During the Mesozoic,the Chaldoran region was situated in the active cont...

متن کامل

Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth

[1] The net influx of water into the deep mantle by plate tectonics has been poorly constrained because it is difficult to quantify how efficiently subducting slabs are devolatilized on a global scale. The significance of deep water cycle in the Earth history is similarly ambiguous because it depends critically on when plate tectonics started and how it evolved through time. Here I show that, u...

متن کامل

Preliminary Petrological Studies of Basement Rocks, Thar Coal Basin, Thar Parkar District, Sindh, Pakistan

The basement rocks encountered in exploratory boreholes drilled for exploration and evaluation of coal deposits in Thar Parkar district, Sindh Pakistan have formed the basis for present studies. The basement complex was penetrated through eighteen boreholes at drill depth range from 112 to 279 meters. These rocks were identified in field as Pink and Grey Granites.. The basement rocks are of Ign...

متن کامل

Petrological conditions and thermobarometry of Trachyandesites in Lar Region, Southwest of Damavand Volcano

Introduction Damavand volcano is a large composite cone (≥ 400 km3) with height elevation (5678m) above sea level, in Central Alborz. This volcano consists of two buildings including old lavas between 1.8 to 0.8 Ma in the northern and eastern part of the current cone and young lavas with about 0.4 to 7 ka years in the south and west part. Trachytic and trachy-andesitic lavas are the most abund...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017